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We build a theoretical model based on a generalization of harmonic applications of Misner-type. It results a
sine-Gordon type fractal differential equation whose elliptical solutions can describe, through a convenient
choice of fractal dynamic constants, various modes of drug release. Thus, the entire class of empirical
models (Higuchi, Korsmeyer-Peppas, Peppas-Sahlin) describing the drug release processes can be dispensed
with.
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Local delivery of drugs is quite a new and appealing
pathway for the treatment of serious diseases such as
acute inflammations, tumors, osteoarthritis, periodontitis,
urinary tract or ear infections [1-3]. The main advantage of
the local therapy over the systemic treatment resides in
the targeted release of the drug, thus limiting the side
effects on normal cells [4-6]. To assure a prolonged release
of the drug at the illness site, the hydrogels proved to be the
most suitable materials, those based on chitosan being
preferred due to their intrinsic properties such as
biocompatibility and biodegradability [7].

On the other hand, despite the good properties of the
chitosan which allow its safely in vivo use, the crosslinkers
used for its hydrogelation proved to be fewer friendly
properties, demonstrating in fact a degree of toxicity which
limits their bio-applications [8,9]. Many attempts were
pursued in order to overcome this drawback, consisting in
new crosslinkers, or even in new crosslinking strategies
[10-115]. An interesting approach for preparing in vivo
biocompatible hydrogels was developed by hydrogelation
of chitosan with citral, a natural compound extracted from
lemon grass [10]. The hydrogels proved porous morphology
with low diameter pores, moderate swelling in physiological
pH while their shape was well preserved, these being
important features for local therapies. To this respect, the
hydrogels were used as matrix for the encapsulation of an
antitumor model drug, 5-Fluorouracil (5FU), and indicated
an obvious improvement of the release in terms of
increasing the drug efficiency by its prolonged delivery,
minimizing the side effects [16].

These positive results encouraged us to go further in the
understanding of the release process, by building a
theoretical model based on a generalization of harmonic
applications of Misner-type, capable of providing new
insights of the drug release theoretical modeling.
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Experimental part
Materials

Chitosan of low molecular weight, citral of 95 % purity,
5-Fluorouracil of purity higher of 99 %, and phosphate buffer
solution were purchased from Aldrich and used as
received.

Drug delivery systems preparation
The drug delivery systems investigated in this paper were

prepared by in situ hydrogelation of the chitosan with citral,
in the presence of 5-Fluorouracil. The synthetic procedure
can be resumed as follows. Chitosan was dissolved in a
0.7 % acetic acid to form a 3 % solution. The solution was
warmed up to 55 oC and kept at this temperature under
vigorous stirring. Targeting the simultaneous hydrogelation
and drug encapsulation, a solution of citral and 5-
fluorouracil dissolved together in a water/ethanol mixture
(1/1, v/v) was slowly dropped upon the chitosan solution.
The amount of drug has been kept constant, while the
ratio of the glucosamine units of chitosan and citral was
varied in order to reach hydrogels with different crosslinking
densities. The amounts of the reagents and the codes of
the resulted hydrogels are given in figure 1.

The in vitro drug release protocol
The in vitro drug release has been monitored in vitro,

simulating in vivo physiological conditions, consisting
mainly in the use of phosphate buffer solution of pH=7.4
(PBS) as release medium and keeping a constant
temperature of 37 oC on the entire period of investigation.
The CF1-CF4 samples of similar weight were immersed
into vials containing 10 mL of PBS. From time to time, 2
mL of supernatant was extracted and replaced with pure
PBS. All the supernatant samples were collected and further
analysed by UV-Vis spectroscopy, by measuring the 5FU
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absorbance. The resulted data were fitted on the calibration
curve of the 5FU drug, which was traced before. It should
be mentioned that the calibration curve of 5FU was
obtained by graphic representation of the absorbance
against known concentrations, using the absorption
maximum from its spectrum, at 265 nm [16-18]. The
cumulative release of the 5FU was calculated using
Lambert-Beer law. The experiments were performed in
triplicate. Absorbance of the released drug from collected
samples was measured using a Horiba Spectrophotometer.

The release kinetics of the systems was studied by fitting
the obtained release data on the following models [19,20]:

-Zero order model: Qt =Ko . t where Qt  is the amount of
drug dissolved in the time t and K0 is the zero order release
constant.

-Higuchi model::Qt =KH . t1/2, where Qt is the amount of
drug released in the time t and KH is the Higuchi dissolution
constant.

-Korsmeyer-Peppas model: , where

is the fraction of drug released at the time t,

K  is the release rate constant and n is the release exponent.

Results and discussions
The drug delivery systems prepared for this study proved

a porous morphology with evident drug crystals in the case
of the samples with high crosslinking density (CF1, CF2),
fact attributed to the high viscosity of the systems which
hampered the drug dispersion and thus favored its
crystallization (fig. 2). On the other hand, the CF3 and CF4
samples with lower crosslinking density showed no
obvious segregation of the drug, indicating its fine
dispersion into the hydrogel matrix.

The monitoring of the 5FU release from the under study
systems was represented in figure 3. As it can be seen, the
release was significantly affected by the encapsulation
pathway. From CF1 and CF2 systems, in which the 5FU
drug was confined as micrometric crystals, the release
occurred faster, while from CF3 and CF4 systems, in which
the drug was fine dispersed, the release was slower. The
encapsulation pathway played a key role in the total amount
of drug released from the matrix, too. As it can be seen,
after 32 hours, the CF1 released almost the entire amount
of drug, while the CF4 only 75%. This can be explained by
stronger intermolecular forces developed in the case of
the fine dispersion of the drug into the hydrogel matrix,
forces which surpassed the interfacial ones developed in
the case of dispersion of the drug as microcrystals [21-
26].

Fig. 1. Graphical representation of the amounts of the
hydrogel components

Fig. 2. Representative SEM images of the
under study drug delivery systems

Fig.3. Graphical representation of the 5FU
release from CF1-CF4 systems
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To further understand the kinetics release of the 5FU
drug from the CF1-CF4 systems, the release data were
fitted on the mathematical equations of the Korsmeyer-
Peppas, Higuchi and Zero Order models (fig. 4).

As it can be seen in Figure 4, the obtained release data
proved a good fitting on the Korsmeyer-Peppas and Higuchi
models, indicating that the release mechanism is
controlled by the diffusion of the 5FU, first from the
superficial layers of the hydrogel, followed by its diffusion
form bulk to outside [19, 27].

Theoretical considerations
As spinons are considered fundamental for the space-

time structure [22], so we can admit that 2x2 real matrices

(1)

become relevant to certain types of dynamics in the
polymeric matter. The elements of this matrix contain, yet
in an unspecified form, both the physical parameters of
the polymeric matter implied in an evolution and the
possible initial conditions of this evolution.

Any matrix 2x2 given by (1) can be written as a linear
combination with real coefficients involving two special
matrices, namely unit matrix 1 and a matrix of null trace i
(an involution) of the form:

(2)

Involution i has the properties that: (a) its square is
multiple of 1 and (b) the fixed points of its homographic
action are those of the matrix α . In equation (2) we have
the freedom to choose a parameterization in which i
square’s to be right the unit matrix up to a sign. In this case,
we can express i elements only by two parameters
representing the asymptotic directions of the matrix α . If
these parameters are complex, then the anharmonic
curves generated by α according to prescription [29,30]

are logarithmic spirals, while those generated by involution
i are ellipse. In this case, we are entitled to discuss the
interactions in connection with the forms of polymeric
matter, geometrically describe. The procedure is the
following.

In the case of complex asymptotic directions, the
representation of the matrix i through the asymptotic
directions is a spherical one. It is completely analogous to
the spherical representation of vectors in the Euclidian
case. The difference lies only in the fact that the role played
by the vector magnitude is now taken over by the matrix
determinant. If the asymptotic directions are, let’s say,
(u+iv), then the spherical representation satisfying the
above conditions (a) and (b) is:

(3)

In the usual case of the self-structuring of any polymeric
matter, u and v can be expressed in relation to the initial
conditions of the evolution [31]. The evolutions, of which
these initial conditions are chosen, must be, accordingly,
of the same nature as the current evolution which it
characterizes by the dynamic equations.

Therefore, the essential idea is that the elements of real
matrices 2x2 represent, through the associated ansatz
[31], polymeric matters in evolution. Such a representation
of polymeric matter has the advantage of allowing an
explicit differential description of polymeric matter itself,
through metric geometry, just like the metric description
of space.

Indeed, the representation of polymeric matter through
2x2 matrices leads to a natural metric of the matrices
space, for example the Killing-Cartan metric of the SL(2R)
algebra of these matrices [31,32]. The base co-vectors of
such a geometry are given, in the general case of a matrix
(1), by differential forms.

These differential forms in the parameterization given
in equations (2) and (3) are:

Fig 4. Linear forms of Korsmeyer-
Peppas (a) and Higuchi (b) models
applied for the release of 5FU from

the CFU hydrogels

(4)

where  tanφ=φµ/λ. In relation to these co-vectors, the metric is given by the square form:

       (5)

One can conclude that, at least as long as the polymeric matter is represented by the property that physics admits as
essential, namely the evolution, its description mode is a metric geometry. In this case, the metric is given in equation (5),
where φ is an arbitrary phase angle, and u and ν are coordinates obtained from the (local) dynamics of the polymeric
matter as described above. Such a connection can definitely be delegated to a generalization of harmonic applications of

a b
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Misner type [33]. As soon as we have solved in this manner
the application way of the polymeric matter on the space
that it has, the quantities φ, u, ν  (and thus the elements of
the matrix family representing the polymeric matter) are
obtained, in principle, as functions of the fractal
coordinates which makes it possible to accurately define
a density of polymeric matter in space (without appealing
to the usual uncontrollable assumptions about the
expansion of polymeric matter, the space expansion or
the existence of space-time, etc.)

We are now forced to establish the connection polymeric
matter - space and backward. To illustrate the procedure,
let us take the case of metric (5) for the polymeric matter,
admitting, in a cartanian sense, a space metric in the fractal
coordinates x’(t, dt), with  t time and  dt the scale resolution
[33-35]. The principle of harmonic application allows us to
always find the material coordinates  (φ, u, ν) as functions
of fractal coordinates, showing how the structured
polymeric matter is distributed in space. The volume
element of the metric (5) is the 3-differential form:

    (6)

while the volume element of space in a fractal mentality
has the form dV ≡ dx1 ∧ dx2 ∧  dx3∧ with  the exterior
product. The notation from equation (6) suggests that we
have here a mass, because the material coordinates reflect
a dynamic problem. Once we have these coordinates, it is
easy to calculate a density, as a ratio between the volume
element of the polymeric matter, whether structured or
not, and the volume element of the space. Formally, we
have for the density of polymeric matter in space, the
relation:

 (7)

where J(φ, u, n; x)represents the Jacobian of transformation
(x1, x2, x3)→ (φ u, ν) that we eventually discovered through
the principle of harmonic application.

The problem of representation of polymeric matter in
this scheme is now solved by the harmonic application
from space to polymeric matter  x → ξ that gives us the
density from equation (7) as function of coordinates. Thus,
we consider the fractal functional of the principle of
harmonic application:

(8)

where h is the metric of space, and g is the metric of
polymeric matter.  The cancellation of the first order
variation of this functional, relative to the fractal
coordinates, gives us the harmonic application we are
looking for. Given that the space is fractal and using the
equation (5) for the metric tensor in polymeric matter, we
must have for the integrant of equation (8) the expression:

(9)

where we use the notation !for the gradient in fractal
coordinates. The Euler equations corresponding to the
functional (8) are:

    (10)

The last two equations represent a harmonic application
from the fractal space to the fractal hyperbolic plane. As a
consequence of those equations we have, as one can easily
verify, the equation:

(11)

This means that the scalar quantity under the differential
gradient operator is constant, real and always positive,
being a sum of two squares of some real quantities. Let us
note that this quantity with m2, where m is real. The first
equality from (10) becomes the sine-Gordon equation of
the fractal type:

(12)

A solution of this equation can be simply given if we
assume that the quantities depend on xi  through the linear
form:

              (13)

In this case, the equation (12) becomes:

(14)

where the accent notes the derivative after ξ and  a2 is the
square of the vector a. Further, the equation (14) is
multiplied with φ’, after which it can be integrated and
leads to:

(15)

where c is an integration constant that we assume real.
Therefore, ξ  is the elliptic integral of first order [35]:

(16)

So, for z=sin φ the inverse of the integral (16) written in
the form:

(17)

involves sn Jacobi’s elliptic function of module k,

(18)

In the previous relations c, ξo,  and  k are fractal constants
(dependent on scale resolution). As by the connection
between polymeric matter -space and backwards, the
metric element (5) is preserved between the two varieties,
the one associated to the polymeric matter through the
coordinates (u, ν, φ) and the one associated to space
through the fractal coordinates(x1, x2, x3), isometry
(immersions, compacti-fication, etc.) can be established.
In such a context, z  can be matched with an adimensional
variable linked to the cumulative drug release in the form
z=m(t)/m∝ , while c(ξ-ξo) with the temporal adimensional
coordinate in the form  .

Then, by a proper normalization, equation (18) can be
written in the form:

(19)

the various scale resolutions being imposed by the module
of sn function (fig. 5). The curves of figure 2 can be obtained
as degenerations of the sn elliptic function for k values
close to 1, as can be seen in figure 6.
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Conclusions
We build a theoretical model based on a generalization

of harmonic applications of Misner-type. It results a sine-
Gordon-type fractal differential equation whose elliptical
solutions can describe, through a convenient choice of
fractal dynamic constants, various modes of drug release.
Thus, the entire class of empirical models (Higuchi,
Korsmeyer-Peppas, Peppas-Sahlin) describing the drug
release processes can be dispensed with.
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